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We have studied some consequences of a generalized theory of electrostatic interactions
between two macroscopic surfaces immersed in a dilute electrolyte. The ionic interactions close
to the two bounding surfaces were supposed to be specifically affected by the presence of the
surfaces, leading to a surface contribution to the total free energy density of the system. A
functional integral (sine-Gordon) representation of the grand canonical partition function was
derived and evaluated in the saddle-point approximation, leading to the repulsive mean-field
and an attractive first-order correlation correction to the interaction free energy. The
magnitude of the correlation term was investigated in detail and general conditions on the form
of the surface-specific free energy density were derived that would lead to an anomalously large
exponentially decaying attractive interactions. We present some arguments in favor of the view
that this anomalous long-range attraction could well represent a case for the electrostatic
nature of the recently measured long-range *“hydrophobic” attraction.

. INTRODUCTION

The original observation' that forces between equally
charged surfaces immersed in an electrolyte can under cer-
tain conditions become attractive has initiated several new
theoretical approaches that try to go beyond the standard
Poisson—-Boltzmann theory in an attempt to include correla-
tions into the description of electrostatic interactions
between charged surfaces**. The inclusion of bulk correla-
tions into the description of electrostatic forces also stimu-
lated the investigation of models that exhibit special types of
surface correlations as is the case in the studies of interac-
tions between neutral surfaces with adsorbed, mobile ions,
or dipoles.?

In this contribution we shall try to establish a formalism
that will connect the surface and the bulk correlations in a
theory of electrostatic forces of considerable generality. We
shall treat the interaction of two surfaces immersed in an
electrolyte, while excluding the complications brought
about by the image forces. The surfaces will be described in a
general way through a surface contribution to the total free
energy of the system that takes into account the direct short-
range interaction between the Coulombic charges and the
surface as well as the possibility of a short-range interaction
among the charges close to or mediated by the surfaces. A
representation of the grand canonical partition function?
will be introduced that allows a rather straightforward de-
coupling into a mean-field ( Poisson-Boltzmann) and a fluc-
tuation contribution to the thermodynamic potential. We
will show that the fluctuation (correlation) contribution in
general leads to an attractive force between the two surfaces.
We shall analyze the magnitude of the correlation term in
the asymptotic limit of large intersurface separations and
show that it depends on the properties of the surface free
energy at or close to the mean-field potential. We will show
that there exists a regime of very large attractive forces and
describe the type of behavior of the surface free energy that
leads to this anomalous attraction.
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The outline of the paper is as follows. In Sec. II we shall
introduce a special representation, the s.c. sine-Gordon
transformation,’ of the grand canonical partition function in
terms of a functional integral over local electrostatic poten-
tials. The “action” of the functional integral will be shown to
decouple into a bulk and a surface term, of which only the
former can be written in an explicit form. This form of the
grand canonical partition function will form the basis of our
subsequent analysis.

Sections IIT and IV deal with an approximate evaluation
of the functional integral. It is assumed that the only signifi-
cant contribution to the functional integral comes from the
regions where the action is stationary. This is the essence of
the saddle-point method, where the deviations from the sta-
tionary point in the function space are dealt with in the har-
monic approximation. The saddle-point method® will give us
an explicit form for the mean and the fluctuation contribu-
tion to the thermodynamic potential. The former will be
shown to be equivalent to an appropriate Poisson-Boltz-
mann description.

Though the saddle-point thermodynamic potential will
be derived explicitly it still eludes exact evaluation and the
WKB"method* will be introduced in Sec. V to obtain an
explicit form amenable to further analysis. It will be shown
that it leads to a generalization of the expression for the zero
order van der Waals-Lifshitz interaction. The dependence
of the correlation part of the free energy on the intersurface
separation will be examined in Sec. V1. It will be shown that
it leads to an attractive force of approximately exponential
decay.

In Sec. VII we shall discuss the magnitude of the corre-
lation interaction and its relation to the analytic properties of
the surface free energy. We shall establish two different re-
gimes of the magnitude of the correlation forces. We will
show that if there exists a region in the *phase space” defined
by the surface free energy density (/) that is not thermody-
namically stable, than the attractive correlation forces can

© 1989 American Institute of Physics




all
on
in
-
he

he
ur

Rudi Podgornik: Electrostatic correlation forces

become anomalously large. The general conditions that have
to be satisfied by the form of / will be stated in order that
these large attractive forces become a distinct physical possi-
bility.

In the last section we shall assess the evidence in favor of
the conclusion that the recently measured very long-range
“hydrophobic” interactions’ can be rationalized in terms of
the general enhanced-attraction type of correlation forces
hypothesized on theoretic grounds in this work.

Il. FUNCTIONAL INTEGRAL REPRESENTATION OF THE
GRAND CANONICAL PARTITION FUNCTION

We shall consider two surfaces immersed into an uni—
uni valent electrolyte, separated by a distance 2a (Fig. 1).
Close to each surface we shall assume there is a region of
spatial dimension ¢ where the ionic species / is perturbed by
the surface with energies £ *. In the asymptotic regime of
large intersurface separations, corresponding to the limit
£=0, this will in general contribute an additional term to
the interaction energy.® It is our aim to investigate the phys-
ical consequences of this specific interaction confined to the
region near each surface. In order to make the analysis as
simple as possible we shall ignore the contribution of image
forces while assuming that the electrolyte is distributed on
both sides of the interfaces.

The configurational part of the Hamiltonian for the
model system defined above can be written in the form

UN=iZe,.eju(ri,rj) +ZESt , (2.1)
2 i) s

where the summation in the first term is carried over all the
charges e; of all the ionic species provided that i#j. The
index in the second sum runs over all the charges of those
species that interact with the surface. We shall assume that
the interaction potential is purely electrostatic and can be
obtained as a solution of Poisson equation

e

2a

FIG. 1. Two surfaces separated by 2a with uni-uni valent ionic solution in
between. The ¢ regions close to the two surfaces, where the surfaces influ-
ence the energy of the neighboring ions, are indicated by dotted lines. To
make the analytical treatment as easy as possible, we have assumed that the
ions are distributed on both sides of the surfaces, This assumption consider-
ably simplifies the formal manipulations without altering the general con-
clusions of our discussion.
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Vu(rr') = —&(r, —r')/ee,, (2.2
where §(r) is the three-dimensional Dirac function and € s
the relative dielectric permittivity, assumed to be the same ir,

all regions of space. Equation (2.1) can be rewritten in =
somewhat modified form better suited for further analysis:

1
Uy = ?% eeu(r,r;)

—%ZNaeiu(ra,ra) +>EF (2.3)

the first sum now running over all the indices. g in the above
equation is the index of the ionic species that has N, ions of
charge e,. u(r,,r,) is the self-energy of each ion of the ath
ionic species. There are altogether V = = NV, ions in the sys-
tem. If we now define the canonical partition function with-
out any restriction on summation indices

o =fexp[ -8y e,eju(ri,rj)]dwr (2.4)
7

with 3 the inverse thermal energy, than the grand canonical
partition function with configurational part of the Hamilto-
nian given by Eq. (2.3) can be cast into the following form:

=0n[3(7)s (o] es

where the index a again runs over all the ionic species and
index s only over those that interact with the surfaces. In the
above equation the absolute activities have been transformed
into

z,>z, exp[%BNaeﬁu(ra,r,,)] , (2.6a)
Z =z exp(—EF). (2.6b)

We shall now proceed by using the Hubbard-Stratonovich®
transformation to obtain a more convenient expression for
E, i.e., we use the following representation:

exp[ -Biy e,-ejil(ri,rj)}
. W

= <exp[iB Z e,»¢>(r,-)D , (2.7)

P
where / is the imaginary unit with the average over auxiliary
fields @(r) defined as '

() =A(B) fw,"”’,

Xexp[ —iBY ¢>(ri)u"’(r,,r,)¢>(rj)]
W

Xde(r,) - -dp(ry) (2.8)
with
A(B) = 2m) V*[det Bu~ ' (r,r') ]2, 2.9)

In the limit of N = oo we shall use the symbolic desig-
nation do(r,):--de(ry) = P @(r). The auxiliary fields
@(r) were introduced above in a rather formal manner but
we shall show later that they have a fairly straightforward
physical interpretation. Using the Hubbard-Stratonovich
representation we can derive the following functional inte-
gral form for the grand canonical partition function’:
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= = [det Bu(r,r") ]"”J-exp {Sp(n)} Dp(r), '
(2.10)

where the ““action” has been defined as
S=—4B ff<P(l‘)u_'(l',l")¢7(r')d3rd3r'
+fp(r)d3r—B§f(s)dzs (2.11)

and can be obtained by executing the summations in Eq.
(2.5) explicitly. In the above equation we have also intro-
duced the local density of the ions as

p(r) = zp()a exp[iBe,p(r)], (2.12)

where p,, is the bulk density of the ath ionic species defined
as po, = z,/V, where Vs the volume occupied by the ions,
the surface part of the free energy is obtained as

Sle(s)l = —kT Y n,

M, : N,
Xln( > iz exP[f,e,"p(s)]} )
N=0 Al
(2.13)

where #; is the surface density of the adsorbing ions. If the
local ion density is a universal function ¢(r) depending only
on z, and e,, the surface free energy density (2.13) depends
on the details of the interactions at the surfaces. For exam-
ple, if we have adsorption sites at the surface where only a
single ion can be located, then M, = 1. Other situations can
easily be imagined leading to different forms of the surface
free energy.

Coulomb system described with the interaction as in Eq.
(2.1) is not, in general, thermodynamically stable and is
bound to collapse. This is due to the fact that the short-range
interactions have not been explicitly included into the con-
figurational part of the Hamiltonian. This difficulty could be
overcome in the bulk part of Eq. (2.11) by making the ap-
proximate identification'?

fp(r)d3r=B fpo(zaeiﬁe"¢('),ﬁ) dr,

where p,(z,3) denotes the grand canonical pressure of the
reference (short-range) system at activity zand temperature
T. This modification would, however, greatly complicate
further analysis. We will therefore resort to a simpler, more
heuristic approach. We shall keep track of the divergent inte-
grals, as they arise, and introduce an appropriate cutoff to
make them finite.*

There are similar problems with the surface part of Eq.
(2.11). The surface free energy density, defined in Eq.
(2.13), represents only the ideal (entropic) contribution
with no short-range interactions included. We could again
make the identification

Flo(s)] =f(z,e%*® ),

where now f(z,3) is the total surface free energy density with
the short-range interactions included. The form (2.13)

(2.14)

(2.15)

would consequently not remain valid in this general case,
instead, appropriate Landau expansions could be used in or-
der to obtain an explicit form of f. Without introducing new
technical difficulties we shall therefore assume the approxi- -
mate identity. (2.15) when referring to the surface free ener-
gy density.

The final form of the action can be obtained after taking
into account that the electrostatic potential satisfies Eq
(2.2) as

S= —=-Bees [ [Vo(n)d>r

+fp[¢<r)]d3r—ﬁ§f[¢<s>1d2 (2.16)

The above form of the action in the functional integral repre-
sentation of the grand canonical partition function (2.10)
will be the starting point of our further analysis.

IIl. THE SADDLE-POINT (EXTENDED POISSON-
BOLTZMANN) APPROXIMATION

Since the action in the functional integral (2.10) is not
Gaussian no exact evaluation of the partition function is at
present feasible. Standard approximation schemes, however,
can be profitably exploited in order to get a good estimate for
all the relevant statistical mechanical quantities. Saddle-
point method was shown to yield reasonable results for Cou-
lomb systems* without any surface specific interactions and
we shall try to extend it to our present case.

If the action (2.16) has a stationary point in the space of

- functions @(r) than in the weak fluctuations regime one can

write to the lowest order

1 528
-
ot 2 Sp(r)dp(r') lo

X bp(r)bp(r')d3rd3, (3.1)

where the subscript O stands for the value of the auxiliary
field ¢ (r) defined by

58 ] —0
Sp(r) lo

In this approximation the grand canonical partition func-
tions is therefore given by the following expression: '

= = [det Bu(r,r’) ]~'/?

(3.2)

525 -1/72

X [det(—-————-;—) } exp(Sp) (3.3)

o@(r)dp(r')/o
and the thermodynamic potential can be obtained as
Q= —kTh=
= — kTS, -i-H

2

) 2

XIn det{ fu(r,r') [————,6 ) - ] d:‘r’] . (3.4)

Sp(r')ép(r”) lo

Formally this is the basic result of the saddle-point method.
The thermodynamic potential is given by its extremal value
plus a contribution due to the fluctuations of the auxiliary
fields around this extremum.

Let us first of all analyze the Euler-Lagrange equation
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(3.2). Using the action S'in the form of Eq. (2.16) we can see
that the extremum condition decouples into two equations.
First of all we obtain the boundary condition at the two
limiting surfaces of the form

Ipzs) | _ Ile)] (3.5)
dn +a atp
where n is the surface normal. If the mean field is distributed
on both sides of the boundary surfaces then the appropriate
Jjump across the surface should be taken in Eq. (3.5). The
variation in the bulk part of the action gives

- 660

f u(r,r)@(r)d’r = — €€, V(1)

— k7RO (3.6)
g

Both the above equations show that the saddle-point solu-
tion is purely imaginary. Therefore making the substitution
@= ip we can recognize Egs. (3.5) and (3.6) as the Lipp-
mann and Poisson-Boltzmann equation.'' This is readily
verified by taking the form of p(r) valid for the uni-uni
valent electrolyte, p(r) = poch[Beyp(r) ], where p, is the
bulk ionic concentration.

A clear physical interpretation of @(r) therefore
emerges from the above discussion, viz. that the auxiliary
fields introduced formally through the Hubbard—Stratono-
vich transformation are just the local electrostatic poten-
tials® and the action S of the functional integral (2.10) is just

the Poisson-Boltzmann free energy evaluated at imaginary _

values of the charges S = Fpg (ie, ). Furthermore, in the sad-
dle-point approximation .S, is nothing but the mean-field
free energy and the mean-field thermodynamic potential is
given in the standard form

B = e [ Vo @ &7 [ ploter1a’s
+ [rip@iars, 37

where again the substitution valid at the mean-field p= ip
has been used. The above equation can be cast into a much
simpler form:

Q, ® ’
=0 — flp) _f odp, (3.8)
S o

where o is the surface charge density and @ is the solution of
the boundary condition (3.5). The standard Poisson-Boltz-

mann result'' in the case of constant surface charge is now

obtained by taking f(¢) = og.

A point of notice here is the boundary condition. Should
the surface part of the energy density depend linearly on @,
Eq. (3.5) would clearly state the electroneutrality of the sys-
tem. In general, however, Eq. (3.5) expresses the charge
regulation condition at the surface. Let us show this by a
simple example. If we assume that there are no short-range
interactions between the adsorbing charges [the entropic
form of f, viz. Eq. (2.13) is valid ] and that the anions adsorb
with a very large energy E ~ = «, being therefore basically

fixed on the surface, while the cations can adsorb to the same
sites one at a time, we get from Eq. (2.13),

flo(s)] =n,In(1+ze=7**) 4 Bop(s), (3.9)

where we introduced the surface charge density of the anions
as o = n,e,. It is straightforward to see that in this case the
boundary condition (3.5) corresponds exactly to the Nin-
ham-Parsegian'? charge regulation condition. Other surface
free energies are clearly possible leading to different forms of
the charging equilibrium at the surface.'?

We would like to note here that we used the expression
“extended Poisson-Boltzmann approximation” for the sad-
dle-point method as applied to an inhomogeneous Coulomb
fluid."* Simultaneously this terminology has also been used
ina similar context by Attard ez al.? with slight but in certain
cases nevertheless important differences. We shall address
the differences between the two approachesin a forthcoming
publication.'* -

IV. FREE ENERGY IN THE SADDLE-POINT
APPROXIMATION

We next proceed to the evaluation of the functional de-
terminant in the expression for the thermodynamic potential
in the saddle-point approximation (3.4). First of all we note
that

[L] =u~'(rr') +Bey(r)(r—r')
Sp(r)éep(r’) lo
(4.1)
with
y(r) =y(z)
d%(z) a
= _5(z —
By " 3 Bag) P
a¥f
+ +—2—68(z+a) (4.2
a(ﬂeo¢)2 ‘ )

since the mean-field (Poisson-Boltzmann) solution de-
pends only on the transversal coordinate (z). Next we notice
the identity

In=E=S,—4Trin[1 +Be(2,7(z)u(r,r')] , (4.3)

where we employed the matrix identity In det(A4)
= Tr In (4). Furthermore we introduce the resolvent oper-
ator defined as

R, (rx') =y(r)G, (rx")

=y(r)u(rr') —pu f y(r")Yu(r,;r")

XR, (r",x')d" (4.4)

with the help of which we can reduce Eq. (4.3) to an analyti-
cally tractable form. This is obtained by noticing Eq. (2.2) of
the pair potential and taking the Laplacian of Eq. (4.4).
Thereby we are led to the following identity:

Trin[1+ Beiy(z)u(rr')]
el

=Tr| duR,(rr). (4.5)
0

The equation for R,, is reduced to the one for G, of the form
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' d%p(2) ,
€. V3G, (r,r) — p———— G, (r,r)
oy T Ko (Bep)®

= —&(r,r") (4.6)

with the boundary condition
aG 2
ee——| = _9f (4.7).

9z | +a H&(Beugv):
Clearly the resolvent operator or, what amounts to the same
thing, the function G, satisfy a Debye-Hiickel type equation
with a position (2) dependent screening length. This result
has already been obtained in the case of no surface specific
interactions.'* What is new here is the boundary condition
satisfied by the resolvent operator (4.7). It depends only on
the nonlinearities present in the surface free energy density
as a function of the local potential. If fis a linear function of
@ the boundary condition is decoupled from the charging
(u) process.

It follows from the approximate form (2.15) that the
right-hand side of Eq. (4.7) could depend on the transversal
coordinate as well. This would furthermore lead to a trans-
versal wave vector (Q) dependence of 2f/3(Beop)*. How-
ever, this is not really essential for our further arguments. It
will become clear later on that in the asymptotic limit only
the Q = Ocomponent of 3 *f /3 (Beop) 2 makes an appreciable
contribution to the interaction free energy.

The calculation of the fluctuation contribution to the
free energy now proceedsina straightforward manner. Since
the system is translationally invariant in the (x,y) plane we
can introduce the Fourier-Bessel transform

2
G, (r,r') = J 8, (Q;z’z/)eio(s.s')i_g_ (4.8)

em?*’
where s is the radius vector in the (X.y) plane. With this
definition we can finally obtain a manageable expression for
the fluctuation part of the free energy:

Be , , Bes
Tr X du R, (r,r") —6;)—5 dQ X du

+a azp(z)
X — L2 o (Q;z,2)d
[ . 3(,3€o¢7)2g“ 0iz,z)dz

af
+ ——=—g,(Qa,a)
8(Beo¢)2g” ¢

Y y ]
+ —_—B(Beogz)zg“(Q’ aa)|.

(4.9)
This is the last general expression that we can derive in the
frame of the saddle-point method. To obtain the Green func-
tion G, [Eq. (4.6) ] the mean-field problem should be
solved first giving us the form of 3%p(z)/d¢*. There is no
general solution to Eq. (4.6) and we have to take recourse to
additional approximations.®

V. THE GREEN FUNCTION IN THE WKB
APPROXIMATION AND THE COUPLING CONSTANT
INTEGRAL

Recently we have shown* that the WK B method gives a
fair approximation to the Green function and has the simpli-
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fying feature of being exactly solvable for any form of suffi-
ciently slowly variable density profile p(2). Using this meth-
od to solve Eq. (4.6) with the boundary condition (4.7) we
are led to the following form for the Green function:
_ 1

2ee [ u(z)u(z)]'?

2q exp[ —2A(a, —a)]
{1 — o expl —2A(a, —a) 1}
x [exp[A(a, — a)Ich [A(z, — 2 1]

{exp[ — |A(z2)]]

8,(0:2,7")

+ach[A@z2)]}, (5.1
where we have used the following definitions:
2 > 82p(z)

() =0+ B2 (5.22)
€€, d(PBeyp” :

A(z,2") =J. u(z")dz" , (5.2b)

2 2
2ee, I(Bewp)” 2eee, A(Beyp)’
(5.2¢)

We are now ready to evaluate the coupling constant integral
in Eq. (4.9). We'shall not go through the algebraically ex-
tremely involving but nevertheless straightforward compu-
tation. Let us just merely quote the final result. By introduc-
ing a function T(Q.x) defined as

T(Qu) =A(a,—a) +1n {1 — a?exp[ —2A(a, —a)1}

Y
—1In (1-a?) +1 [1 H ]
n (1-a7) +Inj 1+ 2eepu(a) 3(Besp)?
(5.3)

with A = A(u) and a = a(u), wecan derive the following
identity:

. S IT(Qu)
Tr R, (r,x") =———sz =t
ul (2m)? Q du
wherefrom it follows that the fluctuation part of the free
energy can be obtained in a simple closed form:

B

(54)

’ S
Tr0 d,uR,‘(r,r)=———(27T)2 d*Q
x{T(Qu=Be) —T(Qu=0}.

(5.5)
The free energy thus derived as a function of the transformed
chemical potential defined in Eq. (2.6a). We have argued
before* that in order to obtain the thermodynamic potential
as a function of the bare chemical potential a Legendre trans-
formation has to be applied leading to an additional term in
Eq. (4.3) of the form

d%p(2)
d(Beop)?

The above expression is nothing but the self-energy of the
ions that has to be subtracted from the thermodynamic po-
tential.’ Combining all these results into the final formula for
the fluctuation free energy that can be derived in the com-
bined saddle-point WKB approximation scheme we obtain
after some rearrangements and partial integrations

_—;—kTTr{ u(r,r’)] . (5.6)
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KT (*°[Bes 3%(2)
1270 J-a | €€, d(Beyp)?

wlo
I

+ ﬂfm Q4Q1In{1 —a*exp[ —2A(a, —a)]}
47r_ o

© 2

+ﬂf Qdan[1+ bes o7 ].(5.7)
27 Jo deequ(a) I(Beyp)?
. Different terms in the above equation have different proven-
ience and different meaning.* The first term corresponds to
the contribution of the fluctuations in the bulk and is a gener-
alization of the Debye-Hiickel expression. The second one
corresponds to the fluctuations coupled across the region
|z| < a and is a generalization of the van der Waals-Lifshitz
term. The last term is a consequence of the fluctuation con-
tributions to the surface free energy of the system. It can be
computed exactly, if we set the upper bound of the Q inegra-
tion equal to 1/b, where b is the adsorption site dimension or
any general short range interaction characteristic length.
Equation (5.7) represents the general solution to our prob-
lem in the frame of the approximations that we used to derive
them. We shall next try to establish the physical conse-
quences of our model for the interactions between the two
surfaces.

VL. THE INTERACTION FREE ENERGY

We shall now investigate the behavior of the free energy
(5.7) as a function of the intersurface separation. Clearly,
the dependence of f(s) on @(s) is needed in order to solve
this problem self-consistently. This knowledge is in general
not available, except for some relatively simple models as,
e.g, Ninham-Parsegian model'? (3.9) or the constant
charge model [the last term in Eq. (3.9) ]. We shall, how-
ever, try to establish some general features of {2 (a) that do
not require a detailed knowledge of the function f[@(s) ].

First of all let us note that the most substantial contribu-
tion to the dependence of 2 on a comes from the second term
in Eq. (5.7). This is the “real” interaction term, the other
two represent perturbations of the bulk and the surface free
energy. Therefore®

%(a)~—-——f QdQIn{l — a* exp[ — 2A(a, —a) 1}

| .

where a as a function of Q and a is implicitly given by Eq.
(5.2c). The above equation is valid in the asymptotic limit
@= oo. The next simplifying assumption will be that in all
the integrals over z the major contribution comes from the

region of unperturbed density. This assumption will allow us

to write

+a
A(a, —a) =f u(z")dz" ~2aJQ> + 2,

—a

(6.2)

where & is the inverse square of the bulk Debye decay length
in the case of a uni—uni valent electrolyte. Again this approx-
imation is exact in the asymptotic limit. It is also clear that in
this limit the first term in Eq. (5. 7) is not important for the a
dependence of Q

Co T e NI

From Eq. (5.2c) it follows that a depends on u(a). Set-
ting u*(a) = Q% + &7 it is easy to establish the physical
meaning of «,. To that purpose let us investigate the depen-
dence of the Green function (5.1) on the transversal coordi-
nate |s — s'| right next to the surface z,2’ = a. After some
algebra and straightforward integrations (see Appendix B)
we obtain

G, (a,au=|s—s;|)

1 ( e —Ku e-x\u )
= 2 — const——— | .
4mee, u (Ku/2)"

Clearly we can now state that K| is nothing but the surface
screening length. The exponential form of the decay of the
transversal part of the correlation function along the surface
is a consequence of the fact that we allowed the screening
medium to be on both sides of the surface. The general
theorem of Jancovici'® on the long-range nature of the trans-
versal correlation function does not apply to this case.

Proceeding now with the evaluation of Eq. (6.1) we
shall first of all investigate the small surface coupling limit,
i.e., 3%f/3(Be,p)? < 1. In this limit we can write

kT(;Beo aZf )2 deQe—2A(a‘——a)
47\ 2€€, I(Beyp)? u(a)
The last integral in the above equation is still a complex
function of k ~«,. This limit corresponds to the case of van-
ishing net surface charge and the interaction free energy is
purely flutuational in origin. From Eq. (6.4) we can easily
derive in this limit
_k_T_( Bes 9
47 \2€€, I(Beyp)?
with Ei(x) being the standard exponential integral function.
From the form of Eq. (6.5) itis evident that it corresponds to
monopolar fluctuations at the two surfaces coupled accross
the solution region with a correlation length of «~'. The
other results that we derive in Appendix A are variations on
this basic limiting form.

Writing first of all Eq. (6.4) in the form

2 2
2= ——( b oY )F(a)
S 4\ 2e€ 5 d(Beyp)?

we can derive different limiting forms for the function F. In
the case that 2«a, 2x,a R 1 we obtain

2 —4ax
F(G) — i f— d .
2«2 (2ax)
A different limiting form is obtained in the case of 2xa % 1
but 2«,a < 1, we derive in this case

(6.3)

—-()

. (6.4)

2
i;_('a)z _ ) Ei( —4ak)  (6.5)

(6.6)

(6.7)

— (2ax,)*

; (6.8)
(2ak)”

F(a) =~const

In this limiting case the interaction therefore decays more
swiftly with separation than in the former case, but eventual-
ly again approaches the decay law exhibited by Eq. (6.5).
Equations (6.4) and (6.5) are of course linearizations of the
basic form (6.1) valid for small values of df/dg >. If this
quantity is large the interaction free energy saturates and
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reverts to the form characteristic for the screened van der
Waals interaction between ideally polarizable half-spaces.

Vil. MAGNITUDE OF THE CORRELATION TERM

The result of our analysis is that the properties of the
surface free energy determine the nature of the interaction
free energy in a very complex manner. First of all the mean-
field solution depends on the derivative of the surface free
energy, viz. Eq. (3.5). The physical meaning of this equation
is simple. The surface free energy exhibits a minimum at the
point of zero charge, i.e., at a point, where the right-hand
side of Eq. (3.5) equals zero. On the contrary, the mean-field
solution has a minimum at a constant value (equal to zero)
of the mean potential, i.e., at a point of zero potential. The
solution of Eq. (3.5) is therefore obtained as an equilibrium
between the electrostatic free energy trying to maintain a
zero potential and the surface free energy trying to maintain
a zero charge. Where exactly this equilibrium is located de-
pends on all the parameters describing the system.

The fluctuation part of the free energy (5.7) is a com-
plex functional of the mean density profile and of the surface
response function, being proportional to the second deriva-
tive of the surface free energy at the mean value of the surface
potential. We could say, by paraphrasing the fluctuation—
dissipation theorem, that the fluctuation free energy de-
pends on the magnitude of the surface potential fluctuations
around the equilibrium value determined by Eq. (3.5).
There arise several possibilities at this point of our analysis.

Let us first of all suppose that we are close to the surface
free energy equilibrium state. Thus (since we are close to an
equilibrium state) we must have by the general theory of
thermodynamic stability'®:

2 2
_pa v,
2e€, d(Beyp)

In this case the fluctuation part of the free energy is fairly
limited in magnitude as one can convince oneself by examin-
ing the general form (6.1). It is always found between the
screened van der Waals free energy of two interacting ideally
polarizable half-spaces and the small coupling limit (6.4).

There exists, however, a more interesting case.® It is ob-
tained if we assume that the solution of the mean-field equa-

(7.1

tions, notably Eq. (3.5), drives the system far away from the

surface equilibrium state, viz. the p.z.c. In this case the sur-
face “state” of the system can be driven towards a thermody-
namically unstable region of f where the surface susceptibil-
ity becomes negative. In the asymptotic limit of large a this
would lead to the following form of Eq. (6.1):

0 kT(Be?) aZf )2 o~ dax

2a) ="~ r , 72

S(a) 47 \2¢e€, I(Bewp)? (%) 4ax (7-2)
where the prefactor is

T(g) ( - )2 (1.3)

LESAVNPS '
with
2 2 ‘ ‘
Ay = [BE @y, (7.4)

€€, d(Beup)?
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Clearly expression Eq. (7.2) can become very large for a
sufficiently high value of | K| and would eventually diverge.
This divergence is, however, not physical. It merely signifies
that additional, higher order, terms would have to be kept
while evaluating the fluctuation contribution to the free en-
ergy. The interaction free energy would nevertheless, though
remaining finite, still be very large.

A word of caution is needed at this point. The change of
sign in the surface sesceptibility K, does not signify that the
whole mean-field solution becomes unstable. It is straight-
forward [compare Appendix B and the last term of Eq.
(5.7)] to show that in the asymptotic regime the stability
condition on the mean-field solution itself, which is also a
necessary condition for the validity of the saddle-point ap-
proximation, reduces to A(@) > 0. Thesignof K, is therefore
not of immediate importance for the global stability of the
mean-field solution.

We can state the condition for the emergence of anoma-

" lously high T'(g) in a more elaborated form. First of all we

note that in the case of uni—uni valent bulk electrolyte we
have

Opla)_

d(Beyp) 2
Now we can use the contact condition for the mean-field
solution?® that connects the value of the surface charge ob-
tained from Eq. (3.6) and the charge density at the surface
p(a). Therefore we establish a connection between p(a), the
density at the midpoint ( =~ bulk density) and the first deriv-
ative of the surface free energy density. After a little bit of
algebra we obtain

2 2 2
M@= \[ b+ L) (L)
€€, 2 \eey/ \dp
1| 9%
— =7 . 7.6
dee, 1 3% (7.:6)

Some further statements can now be made on the condi-
tions that have to be fulfilled in order that A (@) be close but
larger than zero. First of all p, should be small. If this condi-
tion is not fulfilled, clearly, the first term under the root sign
in the above equation would dominate A making it large.
Furthermore, in order that A be as small as possible the sur-
face should be close to an extremum and should exhibit a
negative curvature at that point. In order to satisfy this re-
quirements it is unavoidable that the mean potential should
be displaced from the thermodynamically stable regions of f.
Though we do not possess the relevant information on the
detailed form of f, we can, nevertheless, extract the behavior
of f that satisfies the above requirements. The two most ob-
vious possibilities are drawn in Fig. 2.

VIi. DISCUSSION

In this contribution we have achieved a generalization
of the standard Poisson-Boltzmann in two directions. We
have included a surface contribution to the total free energy
of the system and we have simultaneously estimated the con-
tribution of the fluctuations of the local electrostatic poten-
tial around its mean field profile to the energy of interaction
of two opposed surfaces described by the surface free energy
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b3 ) 3

FIG. 2. The two most obvious cases of the surface free energy density as a
function of the surface potential (g,) are presented that lead to surface un-
stable states. The unstable regions, where the local curvature (surface re-
sponse function) is negative, are indicated by open circles. Whenever the
mean-field solution drives the surface potential into an unstable region of /
that is close enough to the local extremum [vide discussion following Eq.
(7.6) ], the correlation interactions between the two surfaces become anom-
alously large.

£ On the way we had to make a number of approximations,
notably the saddle-point approximation, that allowed us to
evaluate the most significant contributions to the partition
function. However, even this approximate solution had to be
approached through further simplifications as exemplified
by the use of the WKB ansatz. Since our discussion will be
limited to the cases of small bulk ionic activities and to
asymptotic intersurface separation regime, the approximate
methods can be supposed to work fairly accurately.

Our formal analysis of the grand canonical partition
function (2.5) made it possible to describe the thermody-
namics of our model system in terms of a mean-field solution
and fluctuations around it. All the thermodynamic func-
tions decouple according to this scheme.

The main result of our paper is the asymptotic formula
for the correlation interaction (6.1) between two surfaces,
immersed in an electrolyte, described with the surface free
energy density (2.15). Clearly this interaction is always at-
tractive, its magnitude, however, depends on the bulk and
the surface response functions of the system. In this connec-
tion the surface response function is crucial [the bulk one
(7.5) is rather trivial]. If the surface part of the system is
close to the thermodynamic equilibrium (defined as an ex-
tremum of f with positive curvature) the interaction free
energy is always below or at most equal to the screened van
der Waals interaction free energy of two ideally polarizable
surfaces.

Another interesting regime of the correlation attraction
is obtained if the mean-field solution drives the two surfaces
towards thermodynamically unstable regions of f. This is, in
principle, possible since the existence of the double layer at
the interface displaces the surfaces away from their thermo-
dynamic stable state in the phase space of £ If the surface
mean potential obtained as a solution of Egs. (3.5) and (3.6)
is close to a local maximum of f the correlation attraction can
become anomalously large. Closeness to the thermodynam-
ically unstable region of / does not mean that the mean-field
solution itself (and, therefore, the saddle-point approxima-
tion) becomes unstable. We showed that in general there
exists a region characterized by a negative surface suscepti-
bility that, nevertheless, does not affect the global stability of
the mean-field solution. The anomalously large intersurface

5847

attraction would be a direct consequence of the situation
where the surfaces are close to or in their unstable regions.

.The interaction of high energy hydrophobic surfaces
immersed in aqueous solution has recently received a lot of
experimental attention.” The conclusions of different studies
using surfaces that have been hydrophobized in a different
way or the measurement itself done in a different manner are
clearly unequivocal: strongly hydrophobic surfaces (with
contact angles larger than 90°) in extremely dilute electro-
lyte solutions show large attractive forces that decay approx-
imately exponentially with intersurface spacing. Further-
more, the nonequilibrium aspect of this anomalous
attraction has been repeatedly stressed especially by Claes-
son’ who also observed hysteresis phenomena on close ap-
proach of the two surfaces.

Due to the anomalously large value of this forces it is
tempting to associate them with the type of correlation
forces hypothesized on theoretic grounds in this work. There
are several arguments for this step:

(i) If the decay length from Eq. (7.2), being equal to
half the Debye length, is compared to the measured values
we can calculate the effective concentration of the ions that
areinvolved in screening. The number is close to 10~°M and
could be due to ionic impurities that are present even in
deionized water at this concentration.'’ On the other hand if
the ionic concentration is known the computed values are
consistent with it.

(ii) From the point of view presented in this paper the
magnitude of the anomalous attraction should depend also
on the amount of ions (impurities) present in the region
between the surfaces (p,), vide Eq. (7.3). This is also what
one sees experimentally by changing the bulk ionic concen-
tration.'’

(iii) Our analysis is strictly valid in the asymptotic re-
gime. If we venture to assume its validity at smaller separa-
tions one would first have k=~ in Egs. (7.2) and (7.3). As
we push the surfaces together «, goes up, and so should the
force. However, pushing the surfaces together makes the
coupling between the surfaces larger, making the surface
states of smaller energy (if they exist, see Fig. 2) more prob-
able. Eventually, at small enough separations the system
would surmount the energy barrier in fand fall into a lower
energy state [Fig. 2(a)]. [This lower energy state has a very
complicated structure, as revealed in experiments done by
Claesson (Ref.7). It is associated with cavitation with bub-
bles spanning the whole space between the interacting sur-
faces. Our present formalism, aside from making a possible
connection between the existence of lower energy surface
states and anomalously large attractive interaction, cannot
be presumed to be an adequate description of these states.
Cavitation and bubble formation do not enter our analysis at
any point.]

We may add that there have recently been several at-
tempts to give a theoretical foundation to the very long-
range hydrophobic attraction. The first of them '8 is based on
the solvent perturbation idea and leads to water correlation
lengths of =10 nm, which we deem to be untenable. The
second contribution, due to Attard and Parker,' is close to
our way of thinking about the problem. They argue that the
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anomalously large attraction is due to an anomalously large
electrostatic response in the fluid adjacent to the hydropho-
bic surfaces. This is also the impression created by their for-
malism that basically leads to an equation of the form of Eq.
(6.6). However, as we showed above, large surface dielectric
response would merely lead to the screened van der Waals
forces between ideally polarizable half-spaces, that are still a
couple of orders of magnitude away from what is observed
experimentally. We believe that the magnitude of the re-
sponse is not an issue, the nonequilibrium surface states are.
The surfaces are driven away from their thermodynamically
stable states due to the presence of charge inhomogeneities
close to them. If the coupling is strong enough they can ap-
proach a region of f that is thermodynamically unstable. We
showed that this can lead to an anomalously high attractive
interaction bearing several distinctive features of the very
long-range hydrophobic attraction. Finally, a heuristic deri-
vation of the theory proposed here in detail was presented in
Ref. 17, where extensive comparison with experimental data
on very long range hydrophobic attraction gave ample sup-
port to the view that these experimental observatins can be
rationalized in terms of anomalous electrostatic correlation
forces.

Though a more quantitative theory would clearly have
to supplement our formalism in several ways, we think, that
the basic physical mechanisms responsible for occurrence of
anomalous attraction and described in this work are essen-
tially correct.
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APPENDIX A )
We have to investigate the properties of the integral

©

F(a) =

4xa

ﬂ‘—exp{ — [#® + 16a*(«? —«2)]'?}.

(A.1)

After several changes of variables we can derive the fol-
lowing expression that we shall use in deriving the properties
of the integral (A1),

1 + oo
F(a) =—2—f dpe~ (A2)
where S is obtained as
S = 4ka 1 + ¢ ; + In(chp) — (A3)

s

Using now the Laplace method®® we can approximate the
integral (A3) by its saddle-point value, viz.

1 (*= 1 928
F(a):;f_d7 dp exp(—So - 397 o(¢_¢0)2)
— S
_e 27 (A4)
2 35 /3p?
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where @ is given as the solution of the minimization condi-
tion

2¢ 2 2
e“?(Kk;/K)
—| =4k0———— + thp—1=0.
9 lo VI + (/i)
This equation has several solutions depending on the values
of the parameters. In the case e“c, /x> 1, or what amounts to
the same thing 4ax,x, > 1, we can obtain an approximate so-
lution of Eq. (A5),

€’k /K* ~ika

(AS)

(A6)

that leads to the asymptotic form (6.7). Another limiting
case is obtained for e“x,/k € 1 but e*> 1, what amounts to 2
ax> 1 but 2ak, <1, where the approximate solutions are giv-
en as

(AT)
(A3)

e¥~2k.a,
e~ %k/Kk,~2ka,

and leads to the asymptotic form given in Eq. (6.8).

APPENDIX B

We investigate the properties of the correlation function
Gy (r,r’) near each surface (z = + a) in the asymptotic re-
gime of large intersurface separations. We obtain form
(4.8),

, 1 (=
G,(a,ass') = —Z;J; 8.(Qa,a)
XJo(Q]s —s)QdQ, (B1)

where J; (x) is the zero order Bessel function. In the asymp-
totic limit the correlation function (5.1) assumes the form

[1+a(Qa)]

8. (Qia.a) = 2ee u(a)

(B2)

1 [ 2 1 ]
2ee,| u(a) u(a) +K,/2 ’
where the definition of X, is the same as in Eq. (7.1). Taking
now info account the definition (5.2a), viz

u*(a) = Q% + &2, we are led to two integrals of the zero or-
der Bessel function. The first one is elementary, giving

f Jo(Q1ss')QdQ
N
2k

= [—=—Kiakls—5]),

s — §|

(B3)

where K, ,,(x) is the modified Bessel function of the second
kind. The second integral is more tricky. First of all we note
the identity

R e L (B4)
o JO*+ K2 +K /2 Jo
where
FO= [ exp(~¢yOTT R — 2,02
(]
XJo(Qs —s'|)QdQ. (BS)

The above integral can be computed exactly and leads to
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2 7 Fr
F(g) =J—;WK3/2(KS é‘ +u-)
: ~¢Kyg2

Xe , (B6)

where we introduced an abbreviation u = |s —s’|. We can
now limit ourselves to the asymptotic regime u=> o and

after introducing a new variable ¢ defined by
&2 + u? = uPch’t we end up with
J- F(&)d¢ zKSJ- dtexp[ — x,u)cht
0 0
— (Ku/2)sht +1In(tht)] . (B7)

First of all let us note that the above integral exists only if the
following condition is satisfied:

Kk, +K;/2>0. (B8)
Clearly this is the same as A (@) > O defined in Eq. (7.4). The
inequality (B.8) is the asymptotic stability condition on the
mean-field solution obtained by the saddle-point approxima-
tion. It can also be derived by inspection of the last term in
Eq. (5.9).

The integral Eq. (B.7) can again be estimated in asymp-
totic limit by the Laplace method. We shall not go through
all the details that closely follow the development in Appen-
dix A. Let us just write down the final result:

fm F(&)dE~x.e~ 27 exp( — k,u) (Ku/2) 7%,
’ (B9)

Combining now Egs. (B3) and (B9) we are led to the fol-
lowing asymptotic form of the correlation function near the
two surfaces:

G,(aau=|s—s;|)

1 ( e — Kl e — Kl
= 2 — const ————
4ree, u (Ku/2)?
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This is the result that we use in the main text, Eq. (6.3).
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